合成孔径雷达(SAR)图像是各种任务的有价值资产。在过去的几年里,许多网站以易于管理产品的形式免费提供它们,倾向于在S​​AR领域的广泛扩散和研究工作。这些机会的缺点是,这些图像可能会被恶意用户暴露于伪造和操纵,提高对他们的诚信和可信度的新担忧。到目前为止,多媒体取证文献提出了各种技术来定位自然照片中的操纵,但从未调查过SAR图像的完整性评估。此任务构成了新的挑战,因为SAR图像是由处理链完全不同于自然照片的图像。这意味着对于自然图像开发的许多取证方法不保证成功。在本文中,我们研究了SAR图像拼接定位问题的问题。我们的目标是本地化已经复制和粘贴了从另一个图像复制和粘贴的幅度SAR图像的区域,可能正在进行该过程中的某种编辑。为此,我们利用卷积神经网络(CNN)来提取在分析的输入的处理迹线中突出的指纹突出显示。然后,我们检查该指纹以产生二进制篡改掩模,指示拼接攻击下的像素区域。结果表明,我们提出的方法,针对SAR信号的性质量身定制,提供比为自然图像开发的最先进的法医工具更好的表现。
translated by 谷歌翻译
综合产生的内容的广泛扩散是一种需要紧急对策的严重威胁。合成含量的产生不限于多媒体数据,如视频,照片或音频序列,但涵盖了可以包括生物图像的显着大面积,例如西幕和微观图像。在本文中,我们专注于检测综合生成的西幕图像。生物医学文献在很大程度上探讨了西部污染图像,已经表明了如何通过目视检查或标准取证检测器轻松地伪造这些图像。为了克服缺乏公开可用的数据集,我们创建了一个包含超过14k原始的西幕图像和18K合成的Western-Blot图像的新数据集,由三种不同的最先进的生成方法产生。然后,我们调查不同的策略来检测合成的Western印迹,探索二进制分类方法以及单级探测器。在这两种情况下,我们从不利用培训阶段的合成纤维图像。所达到的结果表明,即使在这些科学图像的合成版本未优化利用检测器,综合生成的西幕图像也可以具有良好的精度。
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
National Association of Securities Dealers Automated Quotations(NASDAQ) is an American stock exchange based. It is one of the most valuable stock economic indices in the world and is located in New York City \cite{pagano2008quality}. The volatility of the stock market and the influence of economic indicators such as crude oil, gold, and the dollar in the stock market, and NASDAQ shares are also affected and have a volatile and chaotic nature \cite{firouzjaee2022lstm}.In this article, we have examined the effect of oil, dollar, gold, and the volatility of the stock market in the economic market, and then we have also examined the effect of these indicators on NASDAQ stocks. Then we started to analyze the impact of the feedback on the past prices of NASDAQ stocks and its impact on the current price. Using PCA and Linear Regression algorithm, we have designed an optimal dynamic learning experience for modeling these stocks. The results obtained from the quantitative analysis are consistent with the results of the qualitative analysis of economic studies, and the modeling done with the optimal dynamic experience of machine learning justifies the current price of NASDAQ shares.
translated by 谷歌翻译
Neural Radiance Fields (NeRFs) are emerging as a ubiquitous scene representation that allows for novel view synthesis. Increasingly, NeRFs will be shareable with other people. Before sharing a NeRF, though, it might be desirable to remove personal information or unsightly objects. Such removal is not easily achieved with the current NeRF editing frameworks. We propose a framework to remove objects from a NeRF representation created from an RGB-D sequence. Our NeRF inpainting method leverages recent work in 2D image inpainting and is guided by a user-provided mask. Our algorithm is underpinned by a confidence based view selection procedure. It chooses which of the individual 2D inpainted images to use in the creation of the NeRF, so that the resulting inpainted NeRF is 3D consistent. We show that our method for NeRF editing is effective for synthesizing plausible inpaintings in a multi-view coherent manner. We validate our approach using a new and still-challenging dataset for the task of NeRF inpainting.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The study of the attention mechanism has sparked interest in many fields, such as language modeling and machine translation. Although its patterns have been exploited to perform different tasks, from neural network understanding to textual alignment, no previous work has analysed the encoder-decoder attention behavior in speech translation (ST) nor used it to improve ST on a specific task. In this paper, we fill this gap by proposing an attention-based policy (EDAtt) for simultaneous ST (SimulST) that is motivated by an analysis of the existing attention relations between audio input and textual output. Its goal is to leverage the encoder-decoder attention scores to guide inference in real time. Results on en->{de, es} show that the EDAtt policy achieves overall better results compared to the SimulST state of the art, especially in terms of computational-aware latency.
translated by 谷歌翻译
The underlying dynamics and patterns of 3D surface meshes deforming over time can be discovered by unsupervised learning, especially autoencoders, which calculate low-dimensional embeddings of the surfaces. To study the deformation patterns of unseen shapes by transfer learning, we want to train an autoencoder that can analyze new surface meshes without training a new network. Here, most state-of-the-art autoencoders cannot handle meshes of different connectivity and therefore have limited to no generalization capacities to new meshes. Also, reconstruction errors strongly increase in comparison to the errors for the training shapes. To address this, we propose a novel spectral CoSMA (Convolutional Semi-Regular Mesh Autoencoder) network. This patch-based approach is combined with a surface-aware training. It reconstructs surfaces not presented during training and generalizes the deformation behavior of the surfaces' patches. The novel approach reconstructs unseen meshes from different datasets in superior quality compared to state-of-the-art autoencoders that have been trained on these shapes. Our transfer learning errors on unseen shapes are 40% lower than those from models learned directly on the data. Furthermore, baseline autoencoders detect deformation patterns of unseen mesh sequences only for the whole shape. In contrast, due to the employed regional patches and stable reconstruction quality, we can localize where on the surfaces these deformation patterns manifest.
translated by 谷歌翻译
The GLOM architecture proposed by Hinton [2021] is a recurrent neural network for parsing an image into a hierarchy of wholes and parts. When a part is ambiguous, GLOM assumes that the ambiguity can be resolved by allowing the part to make multi-modal predictions for the pose and identity of the whole to which it belongs and then using attention to similar predictions coming from other possibly ambiguous parts to settle on a common mode that is predicted by several different parts. In this study, we describe a highly simplified version of GLOM that allows us to assess the effectiveness of this way of dealing with ambiguity. Our results show that, with supervised training, GLOM is able to successfully form islands of very similar embedding vectors for all of the locations occupied by the same object and it is also robust to strong noise injections in the input and to out-of-distribution input transformations.
translated by 谷歌翻译
Graph neural networks (GNNs) have been utilized for various natural language processing (NLP) tasks lately. The ability to encode corpus-wide features in graph representation made GNN models popular in various tasks such as document classification. One major shortcoming of such models is that they mainly work on homogeneous graphs, while representing text datasets as graphs requires several node types which leads to a heterogeneous schema. In this paper, we propose a transductive hybrid approach composed of an unsupervised node representation learning model followed by a node classification/edge prediction model. The proposed model is capable of processing heterogeneous graphs to produce unified node embeddings which are then utilized for node classification or link prediction as the downstream task. The proposed model is developed to classify stock market technical analysis reports, which to our knowledge is the first work in this domain. Experiments, which are carried away using a constructed dataset, demonstrate the ability of the model in embedding extraction and the downstream tasks.
translated by 谷歌翻译